1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
https://github.com/ssbandjl/libfabric/blob/main/fabtests/functional/example_msg.c
/*
*
* This software is available to you under the BSD license
* below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <rdma/fabric.h>
#include <rdma/fi_domain.h>
#include <rdma/fi_endpoint.h>
#include <rdma/fi_cm.h>
#include <shared.h>
//Build with
//gcc -o example_msg example_msg.c -L<path to libfabric lib> -I<path to libfabric include> -lfabric
//gcc -o example_msg example_msg.c -L/home/xb/project/libfabric/libfabric/build/lib -I/home/xb/project/libfabric/libfabric/build/include -I/home/xb/project/libfabric/libfabric/build/include -lfabric
#define BUF_SIZE 64
char *dst_addr = NULL;
char *port = "9228";
struct fi_info *hints, *info, *fi_pep;
struct fid_fabric *fabric = NULL;
struct fid_domain *domain = NULL;
struct fid_ep *ep = NULL;
struct fid_pep *pep = NULL;
struct fid_cq *cq = NULL;
struct fid_eq *eq = NULL;
struct fi_cq_attr cq_attr = {0};
struct fi_eq_attr eq_attr = {
.wait_obj = FI_WAIT_UNSPEC
};
//const struct sockaddr_in *sin;
char str_addr[INET_ADDRSTRLEN];
int ret;
char buffer[BUF_SIZE];
fi_addr_t fi_addr = FI_ADDR_UNSPEC;
struct fi_eq_cm_entry entry;
uint32_t event;
ssize_t rd;
/* Initializes all basic OFI resources to allow for a server/client to exchange a message */
static int start_client(void)
{
ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,
hints, &info);
if (ret) {
printf("fi_getinfo: %d\n", ret);
return ret;
}
ret = fi_fabric(info->fabric_attr, &fabric, NULL);
if (ret) {
printf("fi_fabric: %d\n", ret);
return ret;
}
ret = fi_eq_open(fabric, &eq_attr, &eq, NULL);
if (ret) {
printf("fi_eq_open: %d\n", ret);
return ret;
}
ret = fi_domain(fabric, info, &domain, NULL);
if (ret) {
printf("fi_domain: %d\n", ret);
return ret;
}
/* Initialize our completion queue. Completion queues are used to report events associated
* with data transfers. In this example, we use one CQ that tracks sends and receives, but
* often times there will be separate CQs for sends and receives.
*/
cq_attr.size = 128;
cq_attr.format = FI_CQ_FORMAT_MSG;
ret = fi_cq_open(domain, &cq_attr, &cq, NULL);
if (ret) {
printf("fi_cq_open error (%d)\n", ret);
return ret;
}
/* Bind our CQ to our endpoint to track any sends and receives that come in or out on that endpoint.
* A CQ can be bound to multiple endpoints but one EP can only have one send CQ and one receive CQ
* (which can be the same CQ).
*/
ret = fi_endpoint(domain, info, &ep, NULL);
if (ret) {
printf("fi_endpoint: %d\n", ret);
return ret;
}
ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);
if (ret) {
printf("fi_ep_bind cq error (%d)\n", ret);
return ret;
}
ret = fi_ep_bind((ep), &(eq)->fid, 0);
if (ret) {
printf("fi_ep_bind: %d\n", ret);
return ret;
}
ret = fi_enable(ep);
if (ret) {
printf("fi_enable: %d\n", ret);
return ret;
}
ret = fi_connect(ep, info->dest_addr, NULL, 0);
if (ret) {
printf("fi_connect: %d\n", ret);
return ret;
}
rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
if (rd != sizeof(entry)) {
ret = (int) rd;
printf("fi_eq_sread: %d\n", ret);
return ret;
}
return 0;
}
static int start_server(void)
{
const struct sockaddr_in *sin;
/* The first OFI call to happen for initialization is fi_getinfo which queries libfabric
* and returns any appropriate providers that fulfill the hints requirements. Any applicable
* providers will be returned as a list of fi_info structs (&info). Any info can be selected.
* In this test we select the first fi_info struct. Assuming all hints were set appropriately,
* the first fi_info should be most appropriate.
* The flag FI_SOURCE is set for the server to indicate that the address/port refer to source
* information. This is not set for the client because the fields refer to the server, not
* the caller (client). */
/* 初始化时发生的第一个 OFI 调用是 fi_getinfo,它查询 libfabric 并返回满足提示要求的任何适当的提供程序。 任何适用的提供程序都将作为 fi_info 结构 (&info) 列表返回。 可以选择任何信息。 在此测试中,我们选择第一个 fi_info 结构。 假设所有提示均已正确设置,第一个 fi_info 应该是最合适的。 为服务器设置标志FI_SOURCE以指示地址/端口引用源信息。 这不是为客户端设置的,因为这些字段引用服务器,而不是调用者(客户端) */
ret = fi_getinfo(FI_VERSION(1,9), dst_addr, port, dst_addr ? 0 : FI_SOURCE,
hints, &fi_pep);
if (ret) {
printf("fi_getinfo error (%d)\n", ret);
return ret;
}
/* Initialize our fabric. The fabric network represents a collection of hardware and software
* resources that access a single physical or virtual network. All network ports on a system
* that can communicate with each other through their attached networks belong to the same fabric.
*/
ret = fi_fabric(fi_pep->fabric_attr, &fabric, NULL); // 打开fabric, 初始化任何资源前需要打开fabric
if (ret) {
printf("fi_fabric error (%d)\n", ret);
return ret;
}
/* Initialize our endpoint. Endpoints are transport level communication portals which are used to
* initiate and drive communication. There are three main types of endpoints:
* FI_EP_MSG - connected, reliable
* FI_EP_RDM - unconnected, reliable
* FI_EP_DGRAM - unconnected, unreliable
* The type of endpoint will be requested in hints/fi_getinfo. Different providers support different
* types of endpoints. TCP supports only FI_EP_MSG but when used with RxM, can support FI_EP_RDM.
* In this application, we requested TCP and FI_EP_MSG.
*/
ret = fi_eq_open(fabric, &eq_attr, &eq, NULL); // 打开事件队列EQ, 一般用于建连, 收发数据产生的事件
if (ret) {
printf("fi_eq_open: %d\n", ret);
return ret;
}
ret = fi_passive_ep(fabric, fi_pep, &pep, NULL); // 打开被动端点, 常用与服务端监听端口, 支持多个客户端domain连接进来
if (ret) {
printf("fi_passive_ep: %d\n", ret);
return ret;
}
ret = fi_pep_bind(pep, &eq->fid, 0); // 为端点绑定事件队列
if (ret) {
printf("fi_pep_bind %d", ret);
return ret;
}
ret = fi_listen(pep); // 监听端点, 等待客户端连接请求
if (ret) {
printf("fi_listen %d", ret);
return ret;
}
return 0;
}
static int complete_connection(void)
{
rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0); // 等待读取客户端触发的服务端事件, 读取事件, 推动进展(驱动程序运转)
if (rd != sizeof entry) {
ret = (int) rd;
printf("fi_eq_sread: %d", ret);
if (ret)
goto err;
}
ret = fi_domain(fabric, info, &domain, NULL); // domain域用于将资源分组, 可基于域来做管理
if (ret) {
printf("fi_domain: %d\n", ret);
return ret;
}
ret = fi_domain_bind(domain, &eq->fid, 0);
if (ret) {
printf("fi_domain_bind: %d\n", ret);
return ret;
}
/*
* Initialize our completion queue. Completion queues are used to report events associated
* with data transfers. In this example, we use one CQ that tracks sends and receives, but
* often times there will be separate CQs for sends and receives.
*/
cq_attr.size = 128;
cq_attr.format = FI_CQ_FORMAT_MSG;
ret = fi_cq_open(domain, &cq_attr, &cq, NULL);
if (ret) {
printf("fi_cq_open error (%d)\n", ret);
return ret;
}
/* Bind our CQ to our endpoint to track any sends and receives that
* come in or out on that endpoint. A CQ can be bound to multiple
* endpoints but one EP can only have one send CQ and one receive CQ
* (which can be the same CQ).
*/
ret = fi_endpoint(domain, info, &ep, NULL); // 用于客户端, 主动端点, 发起建连
if (ret) {
printf("fi_endpoint: %d\n", ret);
return ret;
}
ret = fi_ep_bind(ep, &cq->fid, FI_SEND | FI_RECV);
if (ret) {
printf("fi_ep_bind cq error (%d)\n", ret);
return ret;
}
ret = fi_ep_bind((ep), &(eq)->fid, 0);
if (ret) {
printf("fi_ep_bind: %d\n", ret);
return ret;
}
ret = fi_enable(ep);
if (ret) {
printf("fi_enable: %d", ret);
return ret;
}
ret = fi_accept(ep, NULL, 0);
if (ret) {
printf("fi_accept: %d\n", ret);
return ret;
}
rd = fi_eq_sread(eq, &event, &entry, sizeof(entry), -1, 0);
if (rd != sizeof(entry)) {
ret = (int) rd;
printf("fi_eq_read: %d\n", ret);
return ret;
}
return 0;
err:
if (info)
fi_reject(pep, info->handle, NULL, 0);
return ret;
}
static void cleanup(void)
{
int ret;
/* All OFI resources are cleaned up using the same fi_close(fid) call. */
if (ep) {
ret = fi_close(&ep->fid);
if (ret)
printf("warning: error closing EP (%d)\n", ret);
}
if (pep) {
ret = fi_close(&pep->fid);
if (ret)
printf("warning: error closing PEP (%d)\n", ret);
}
ret = fi_close(&cq->fid);
if (ret)
printf("warning: error closing CQ (%d)\n", ret);
ret = fi_close(&domain->fid);
if (ret)
printf("warning: error closing domain (%d)\n", ret);
ret = fi_close(&eq->fid);
if (ret)
printf("warning: error closing EQ (%d)\n", ret);
ret = fi_close(&fabric->fid);
if (ret)
printf("warning: error closing fabric (%d)\n", ret);
if (info)
fi_freeinfo(info);
if (fi_pep)
fi_freeinfo(fi_pep);
}
/* Post a receive buffer. This call does not ensure a message has been received, just
* that a buffer has been passed to OFI for the next message the provider receives.
* Receives may be directed or undirected using the address parameter. Here, we
* pass in the fi_addr but note that the server has not inserted the client's
* address into its AV, so the address is still FI_ADDR_UNSPEC, indicating that
* this buffer may receive incoming data from any address. An application may
* set this to a real fi_addr if the buffer should only receive data from a certain
* peer.
* When posting a buffer, if the provider is not ready to process messages (because
* of connection initialization for example), it may return -FI_EAGAIN. This does
* not indicate an error, but rather that the application should try again later.
* This is why we almost always wrap sends and receives in a do/while. Some providers
* may need the application to drive progress in order to get out of the -FI_EAGAIN
* loop. To drive progress, the application needs to call fi_cq_read (not necessarily
* reading any completion entries).
*/
static int post_recv(void)
{
int ret;
do {
ret = fi_recv(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);
if (ret && ret != -FI_EAGAIN) {
printf("error posting recv buffer (%d\n", ret);
return ret;
}
if (ret == -FI_EAGAIN)
(void) fi_cq_read(cq, NULL, 0);
} while (ret);
return 0;
}
/* Post a send buffer. This call does not ensure a message has been sent, just that
* a buffer has been submitted to OFI to be sent. Unlike a receive buffer, a send
* needs a valid fi_addr as input to tell the provider where to send the message.
* Similar to the receive buffer posting porcess, when posting a send buffer, if the
* provider is not ready to process messages, it may return -FI_EAGAIN. This does not
* indicate an error, but rather that the application should try again later. Just like
* the receive, we drive progress with fi_cq_read if this is the case.
*/
static int post_send(void)
{
char *msg = "Hello, server! I am the client you've been waiting for!\0";
int ret;
(void) snprintf(buffer, BUF_SIZE, "%s", msg);
do {
ret = fi_send(ep, buffer, BUF_SIZE, NULL, fi_addr, NULL);
if (ret && ret != -FI_EAGAIN) {
printf("error posting send buffer (%d)\n", ret);
return ret;
}
if (ret == -FI_EAGAIN)
(void) fi_cq_read(cq, NULL, 0);
} while (ret);
return 0;
}
/* Wait for the message to be sent/received using the CQ. fi_cq_read not only drives progress
* but also returns any completed events to notify the application that it can reuse
* the send/recv buffer. The returned completion entry will have fields set to let the application
* know what operation completed. Not all fields will be valid. The fields set will be indicated
* by the cq format (when creating the CQ). In this example, we use FI_CQ_FORMAT_MSG in order to
* use the flags field.
*/
static int wait_cq(void)
{
struct fi_cq_err_entry comp;
int ret;
do {
ret = fi_cq_read(cq, &comp, 1);
if (ret < 0 && ret != -FI_EAGAIN) {
printf("error reading cq (%d)\n", ret);
return ret;
}
} while (ret != 1);
if (comp.flags & FI_RECV)
printf("I received a message!\n");
else if (comp.flags & FI_SEND)
printf("My message got sent!\n");
return 0;
}
static int run(void)
{
int ret;
if (dst_addr) {
printf("Client: send to server %s\n", dst_addr);
ret = post_send();
if (ret)
return ret;
ret = wait_cq();
if (ret)
return ret;
} else {
printf("Server: post buffer and wait for message from client\n");
ret = post_recv();
if (ret)
return ret;
ret = wait_cq();
if (ret)
return ret;
printf("This is the message I received: %s\n", buffer);
}
return 1;
}
int main(int argc, char **argv)
{
int ret;
/* Hints are used to request support for specific features from a provider */
hints = fi_allocinfo(); //
if (!hints)
return EXIT_FAILURE;
/* Server run with no args, client has server's address as an argument */
dst_addr = argv[1];
//Set anything in hints that the application needs
/* Request FI_EP_MSG (reliable datagram) endpoint which will allow us
* to reliably send messages to peers without having to listen/connect/accept. */
hints->ep_attr->type = FI_EP_MSG; // 可靠数据报端点, 类似socket, 但无须执行listen/connect/accept
/* Request basic messaging capabilities from the provider (no tag matching,
* no RMA, no atomic operations) */
hints->caps = FI_MSG;
/* Specifically request the tcp provider for the simple test */
// hints->fabric_attr->prov_name = "tcp"; // 类似socket的, 面向连接的消息类型端点
hints->fabric_attr->prov_name = "ofi_rxm;verbs";
/* Specifically request SOCKADDR_IN address format to simplify addressing for test */
hints->addr_format = FI_SOCKADDR_IN;
/* Default to FI_DELIVERY_COMPLETE which will make sure completions do not get generated
* until our message arrives at the destination. Otherwise, the client might get a completion
* and exit before the server receives the message. This is to make the test simpler */
/* 默认为 FI_DELIVERY_COMPLETE,这将确保在我们的消息到达目的地之前不会生成完成(等待)。 否则,客户端可能会在服务器收到消息之前完成并退出。 这是为了让测试更简单 */
hints->tx_attr->op_flags = FI_DELIVERY_COMPLETE;
//Done setting hints
if (!dst_addr) {
ret = start_server();
if (ret) {
goto out;
return ret;
}
}
ret = dst_addr ? start_client() : complete_connection();
if (ret) {
goto out;
return ret;
}
ret = run();
out:
cleanup();
return ret;
}
|